<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 高中數(shù)學(xué)說課稿

    時間:2024-08-30 20:00:18 美云 高中說課稿 我要投稿

    關(guān)于高中數(shù)學(xué)說課稿范文(通用13篇)

      作為一位兢兢業(yè)業(yè)的人民教師,就有可能用到說課稿,借助說課稿可以有效提升自己的教學(xué)能力。怎樣寫說課稿才更能起到其作用呢?下面是小編整理的高中數(shù)學(xué)說課稿,希望能夠幫助到大家。

    關(guān)于高中數(shù)學(xué)說課稿范文(通用13篇)

      高中數(shù)學(xué)說課稿 1

      一、教材分析

      1、教材內(nèi)容

      本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

      2、教材所處地位、作用

      函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識解決一些簡單的實(shí)際問題。通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

      3、教學(xué)目標(biāo)

      (1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性的方法;

      (2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

      (3)情感態(tài)度價值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

      4、重點(diǎn)與難點(diǎn)

      教學(xué)重點(diǎn)

      (1)函數(shù)單調(diào)性的概念;

      (2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

      教學(xué)難點(diǎn)

      (1)函數(shù)單調(diào)性的知識形成;

      (2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

      二、教法分析與學(xué)法指導(dǎo)

      本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

      1、通過學(xué)生熟悉的`實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性。

      2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點(diǎn)的突破,以獲得各類問題的解決。

      3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_(dá)。

      4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

      在學(xué)法上:

      1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

      2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍。

      三、 教學(xué)過程

      教學(xué)

      環(huán)節(jié)

      教 學(xué) 過 程

      設(shè) 計 意 圖

      問題

      情境

      (播放中央電視臺天氣預(yù)報的音樂)

      滿足在定義域上的單調(diào)性的討論。

      2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

      3、重視學(xué)生的動手實(shí)踐過程。通過對定義的解讀、鞏固,讓學(xué)生動手去實(shí)踐運(yùn)用定義。

      4、重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題。

      高中數(shù)學(xué)說課稿 2

      教學(xué)目標(biāo)

      (1)了解算法的含義,體會算法思想。

      (2)會用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;

      (3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

      教學(xué)重難點(diǎn)

      重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計。

      難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

      情境導(dǎo)入

      電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

      第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

      第二步:瞄準(zhǔn)目標(biāo);

      第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;

      第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

      第五步:開槍;

      第六步:迅速轉(zhuǎn)移(或隱蔽)

      以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

      課堂探究

      預(yù)習(xí)提升

      1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

      2、描述方式

      自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。

      3、算法的要求

      (1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

      (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

      4、算法的特征

      (1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

      (2)確定性:算法的計算規(guī)則及相應(yīng)的計算步驟必須是唯一確定的。

      (3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

      (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。

      (5)不唯一性:解決同一問題的算法可以是不唯一的

      課堂典例講練

      命題方向1對算法意義的理解

      例1、下列敘述中,

      ①植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;

      ②按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

      ③從青島乘動車到濟(jì)南,再從濟(jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會開幕式;

      ④3x>x+1;

      ⑤求所有能被3整除的正數(shù),即3,6,9,12。

      能稱為算法的個數(shù)為(  )

      A、2

      B、3

      C、4

      D、5

      【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

      【答案】B

      [規(guī)律總結(jié)]

      1、正確理解算法的概念及其特點(diǎn)是解決問題的關(guān)鍵、

      2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

      【變式訓(xùn)練】下列對算法的理解不正確的是________

      ①一個算法應(yīng)包含有限的步驟,而不能是無限的

      ②算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

      ③算法中的`每一步都應(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

      ④一個問題只能設(shè)計出一個算法

      【解析】由算法的有限性指包含的步驟是有限的故①正確;

      由算法的明確性是指每一步都是確定的故②正確;

      由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

      由對于同一個問題可以有不同的算法故④不正確。

      【答案】④

      命題方向2解方程(組)的算法

      例2、給出求解方程組的一個算法。

      [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

      [規(guī)范解答]方法一:算法如下:

      第一步,①×(-2)+②,得(-2+5)y=-14+11

      即方程組可化為

      第二步,解方程③,可得y=-1,④

      第三步,將④代入①,可得2x-1=7,x=4

      第四步,輸出4,-1

      方法二:算法如下:

      第一步,由①式可以得到y(tǒng)=7-2x,⑤

      第二步,把y=7-2x代入②,得x=4

      第三步,把x=4代入⑤,得y=-1

      第四步,輸出4,-1

      [規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強(qiáng)調(diào)對“通法、通解”的理解,又要強(qiáng)調(diào)對所學(xué)知識的靈活運(yùn)用。

      2、設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟。

      【變式訓(xùn)練】

      【解】算法如下:S1,①+2×②得5x=1;③

      S2,解③得x=;

      S3,②-①×2得5y=3;④

      S4,解④得y=;

      命題方向3篩選問題的算法設(shè)計

      例3、設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、

      [思路分析]比較a,b比較m與c―→最小數(shù)

      [規(guī)范解答]算法步驟如下:

      1、比較a與b的大小,若a

      2、比較m與c的大小,若m

      [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。

      【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

      21,3,0,9,15,72,89,91,93

      [解析]1、先找到序列中的第一個數(shù)m,m=21;

      2、將m與89比較,是否相等,如果相等,則搜索到89;

      3、如果m與89不相等,則往下執(zhí)行;

      4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

      命題方向4非數(shù)值性問題的算法

      例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。

      (1)設(shè)計安全渡河的算法;

      (2)思考每一步算法所遵循的共同原則是什么?

      高中數(shù)學(xué)說課稿 3

      一、教學(xué)目標(biāo)

      1、知識與能力目標(biāo)

      ①使學(xué)生理解數(shù)列極限的概念和描述性定義。

      ②使學(xué)生會判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

      ③通過觀察運(yùn)動和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

      2、過程與方法目標(biāo)

      培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

      3、情感、態(tài)度、價值觀目標(biāo)

      使學(xué)生初步認(rèn)識有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

      二、教學(xué)重點(diǎn)和難點(diǎn)

      教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

      教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

      三、教學(xué)對象分析

      這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對于學(xué)生來說是一個全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時對極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時,數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

      四、教學(xué)策略及教法設(shè)計

      本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個比較簡單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個數(shù)列的特征,從而得出數(shù)列極限的一個描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認(rèn)識,接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識打下基礎(chǔ)。在整個教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

      五、教學(xué)過程

      1、創(chuàng)設(shè)情境

      課件展示創(chuàng)設(shè)情境動畫。

      今天我們將要學(xué)習(xí)一個很重要的新的知識。

      情境

      (1)我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

      情境

      (2)我國古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會切完?

      大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會變成零。從而引出極限的概念。

      2、定義探究

      展示定義探索(一)動畫演示。

      問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時,a,I的變化趨勢有什么特點(diǎn)?

      (1)1/2,2/3,3/4,n/n—1

      (2)0.9,0.99,0.999,0.9999,1—1/10n

      問題2:觀察課件演示,請分析以上兩個數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

      師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時,項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時,項(xiàng)無限趨近于1。

      那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個常數(shù)叫做這個數(shù)列的極限。

      那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當(dāng)n無限增大時,an無限趨向于某一個常數(shù)A,則稱A是數(shù)列an的'極限。

      提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢?

      展示定義探索(二)動畫演示。

      師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

      數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時,不等式|an—A|n的極限。

      課件可以實(shí)現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時的一個畫面。

      定義探索動畫(二)課件可以實(shí)現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時的一個畫面。

      3、知識應(yīng)用

      這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

      例1、已知數(shù)列:

      1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。

      (3)確定這個數(shù)列的極限。

      例2、已知數(shù)列:

      已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

      猜測這個數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個極限的差都小于0.017

      例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

      4、知識小結(jié)

      這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認(rèn)識。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

      課后練習(xí):

      (1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

      (2)課本練習(xí)1,2。

      5、探究性問題

      設(shè)計研究性學(xué)習(xí)的思考題。

      提出問題:

      芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時,烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

      這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識去解決生活中遇到的實(shí)際問題的習(xí)慣。

      高中數(shù)學(xué)說課稿 4

      教學(xué)準(zhǔn)備

      1.教學(xué)目標(biāo)

      1、知識與技能:

      函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

      賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

      2、過程與方法:

      (1)通過實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

      (2)了解構(gòu)成函數(shù)的要素;

      (3)會求一些簡單函數(shù)的定義域和值域;

      (4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

      3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

      教學(xué)重點(diǎn)/難點(diǎn)

      重點(diǎn):理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);

      難點(diǎn):符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

      教學(xué)用具

      多媒體

      函數(shù)及其表示

      教學(xué)過程

      (一)創(chuàng)設(shè)情景,揭示課題

      1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

      2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

      (1)炮彈的射高與時間的變化關(guān)系問題;

      (2)南極臭氧空洞面積與時間的變化關(guān)系問題;

      (3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.

      3、分析、歸納以上三個實(shí)例,它們有什么共同點(diǎn);

      4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實(shí)例中兩個變量間的依賴關(guān)系;

      5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實(shí)例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

      (二)研探新知

      1、函數(shù)的有關(guān)概念

      (1)函數(shù)的概念:

      設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

      記作:y=f(x),x∈A.

      其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

      注意:

      ①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

      ②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.

      (2)構(gòu)成函數(shù)的三要素是什么?

      定義域、對應(yīng)關(guān)系和值域

      (3)區(qū)間的概念

      ①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

      ②無窮區(qū)間;

      ③區(qū)間的數(shù)軸表示.

      (4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?

      通過三個已知的函數(shù):y=ax+b(a≠0)

      y=ax2+bx+c(a≠0)

      y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.

      師:歸納總結(jié)

      (三)質(zhì)疑答辯,排難解惑,發(fā)展思維。

      1、如何求函數(shù)的定義域

      例1:已知函數(shù)f(x)=+

      (1)求函數(shù)的定義域;

      (2)求f(-3),f()的值;

      (3)當(dāng)a>0時,求f(a),f(a-1)的值.

      分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

      例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的'函數(shù)的解析式,并寫出定義域.

      分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

      所以s==(40-x)x(0<x<40)

      引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

      (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.

      2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.

      (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.

      (4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)

      (5)滿足實(shí)際問題有意義.

      鞏固練習(xí):課本P19第1

      2、如何判斷兩個函數(shù)是否為同一函數(shù)

      例3、下列函數(shù)中哪個與函數(shù)y=x相等?

      分析:

      1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或?yàn)橥缓瘮?shù))

      2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

      解:

      課本P18例2

      (四)歸納小結(jié)

      ①從具體實(shí)例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

      (五)設(shè)置問題,留下懸念

      1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

      2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.

      課堂小結(jié)

      高中數(shù)學(xué)說課稿 5

      教學(xué)目標(biāo):

      (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題。

      (2)進(jìn)一步理解曲線的方程和方程的曲線。

      (3)初步掌握求曲線方程的方法。

      (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。

      教學(xué)重點(diǎn)、難點(diǎn):

      求曲線的方程。

      教學(xué)用具:

      計算機(jī)。

      教學(xué)方法:

      啟發(fā)引導(dǎo)法,討論法。

      教學(xué)過程:

      【引入】

      1、提問:什么是曲線的方程和方程的曲線。

      學(xué)生思考并回答。教師強(qiáng)調(diào)。

      2、坐標(biāo)法和解析幾何的意義、基本問題。

      對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問題就是:

      (1)根據(jù)已知條件,求出表示平面曲線的方程。

      (2)通過方程,研究平面曲線的性質(zhì)。

      事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

      【問題】

      如何根據(jù)已知條件,求出曲線的方程。

      【實(shí)例分析】

      例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

      首先由學(xué)生分析:根據(jù)直線方程的知識,運(yùn)用點(diǎn)斜式即可解決。

      解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

      由斜率關(guān)系可求得l的斜率為

      于是有

      即l的方程為

      ①

      分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點(diǎn)斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

      (通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

      證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解。

      設(shè)是線段的垂直平分線上任意一點(diǎn),則

      即

      將上式兩邊平方,整理得

      這說明點(diǎn)的坐標(biāo)是方程的解。

      (2)以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

      設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

      到、的距離分別為

      所以,即點(diǎn)在直線上。

      綜合(1)、(2),①是所求直線的方程。

      至此,證明完畢。回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

      解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

      由兩點(diǎn)間的.距離公式,點(diǎn)所適合的條件可表示為

      將上式兩邊平方,整理得

      果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

      這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對應(yīng)的思想。因此是個好方法。

      讓我們用這個方法試解如下問題:

      例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。

      分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

      求解過程略。

      【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

      分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

      首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說得更準(zhǔn)確一點(diǎn)就是:

      (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點(diǎn)的坐標(biāo);

      (2)寫出適合條件的點(diǎn)的集合

      ;

      (3)用坐標(biāo)表示條件,列出方程;

      (4)化方程為最簡形式;

      (5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

      一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過特殊情況要說明。

      上述五個步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正。

      下面再看一個問題:

      例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。

      【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動變化的過程中尋找關(guān)系。

      解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

      由距離公式,點(diǎn)適合的條件可表示為

      ①

      將①式移項(xiàng)后再兩邊平方,得

      化簡得

      由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。

      【練習(xí)鞏固】

      題目:在正三角形內(nèi)有一動點(diǎn),已知到三個頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。

      分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

      根據(jù)條件,代入坐標(biāo)可得

      化簡得

      ①

      由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

      【小結(jié)】師生共同總結(jié):

      (1)解析幾何研究研究問題的方法是什么?

      (2)如何求曲線的方程?

      (3)請對求解曲線方程的五個步驟進(jìn)行評價。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

      【作業(yè)】課本第72頁練習(xí)1,2,3;

      高中數(shù)學(xué)說課稿 6

      課題:

      等比數(shù)列的概念

      教學(xué)目標(biāo)

      1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

      2、使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

      3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

      教學(xué)重點(diǎn),難點(diǎn)

      重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

      教學(xué)用具

      投影儀,多媒體軟件,電腦、

      教學(xué)方法

      討論、談話法、

      教學(xué)過程

      一、提出問題

      給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

      ①—2,1,4,7,10,13,16,19,…

      ②8,16,32,64,128,256,…

      ③1,1,1,1,1,1,1,…

      ④243,81,27,9,3,1,,,…

      ⑤31,29,27,25,23,21,19,…

      ⑥1,—1,1,—1,1,—1,1,—1,…

      ⑦1,—10,100,—1000,10000,—100000,…

      ⑧0,0,0,0,0,0,0,…

      由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

      二、講解新課

      請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進(jìn)行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)

      這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

      等比數(shù)列(板書)

      1、等比數(shù)列的定義(板書)

      根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

      請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是等比數(shù)列,當(dāng)時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識:

      2、對定義的認(rèn)識(板書)

      (1)等比數(shù)列的首項(xiàng)不為0;

      (2)等比數(shù)列的每一項(xiàng)都不為0,即

      問題:一個數(shù)列各項(xiàng)均不為0是這個數(shù)列為等比數(shù)列的.什么條件?

      (3)公比不為0、

      用數(shù)學(xué)式子表示等比數(shù)列的定義、

      是等比數(shù)列

      ①、在這個式子的寫法上可能會有一些爭議,如寫成

      ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

      是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

      項(xiàng)的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

      3、等比數(shù)列的通項(xiàng)公式(板書)

      問題:用和表示第項(xiàng)

      ①不完全歸納法

      ②疊乘法,…,,這個式子相乘得,所以(板書)

      (1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識通項(xiàng)公式、(板書)

      (2)對公式的認(rèn)識

      由學(xué)生來說,最后歸結(jié):

      ①函數(shù)觀點(diǎn);

      ②方程思想(因在等差數(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已)、

      這里強(qiáng)調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

      如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

      三、小結(jié)

      1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

      2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

      3、用方程的思想認(rèn)識通項(xiàng)公式,并加以應(yīng)用。

      探究活動

      將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

      參考答案:

      30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(對數(shù)算也行)。

      高中數(shù)學(xué)說課稿 7

      教學(xué)目標(biāo):

      1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

      2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

      3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

      問題的能力及數(shù)形結(jié)合思想。

      教學(xué)重點(diǎn):

      理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

      教學(xué)難點(diǎn):

      用“無限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

      教學(xué)過程:

      一、問題情境

      1、問題情境。

      如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢呢?

      如果將點(diǎn)P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

      如果將點(diǎn)P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。

      因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

      2、探究活動。

      如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,

      (1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

      (2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

      (3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

      二、建構(gòu)數(shù)學(xué)

      切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動,割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無限逼近點(diǎn)P時,直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

      思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

      三、數(shù)學(xué)運(yùn)用

      例1 試求在點(diǎn)(2,4)處的切線斜率。

      解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

      則割線PQ的斜率為:

      當(dāng)Q沿曲線逼近點(diǎn)P時,割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

      當(dāng)Q點(diǎn)橫坐標(biāo)無限趨近于P點(diǎn)橫坐標(biāo)時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。

      從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

      解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

      當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

      練習(xí) 試求在x=1處的切線斜率。

      解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

      當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

      小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

      (1)找到定點(diǎn)P的坐標(biāo),設(shè)出動點(diǎn)Q的坐標(biāo);

      (2)求出割線PQ的斜率;

      (3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。

      思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

      解 設(shè)

      所以,當(dāng)無限趨近于0時,無限趨近于點(diǎn)處的切線的`斜率。

      變式訓(xùn)練

      1、已知,求曲線在處的切線斜率和切線方程;

      2、已知,求曲線在處的切線斜率和切線方程;

      3、已知,求曲線在處的切線斜率和切線方程。

      課堂練習(xí)

      已知,求曲線在處的切線斜率和切線方程。

      四、回顧小結(jié)

      1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢可以由該點(diǎn)處的切線反映(局部以直代曲)。

      2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

      五、課外作業(yè)

      高中數(shù)學(xué)說課稿 8

      一、單元教學(xué)內(nèi)容

      (1)算法的基本概念

      (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

      (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

      二、單元教學(xué)內(nèi)容分析

      算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá)解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

      三、單元教學(xué)課時安排:

      1、算法的基本概念3課時

      2、程序框圖與算法的.基本結(jié)構(gòu)5課時

      3、算法的基本語句2課時

      四、單元教學(xué)目標(biāo)分析

      1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

      2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

      3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進(jìn)一步體會算法的基本思想。

      4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

      五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

      1、重點(diǎn)

      (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實(shí)際問題

      2、難點(diǎn)

      (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

      六、單元總體教學(xué)方法

      本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對實(shí)例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。

      七、單元展開方式與特點(diǎn)

      1、展開方式

      自然語言→程序框圖→算法語句

      2、特點(diǎn)

      (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

      八、單元教學(xué)過程分析

      1.算法基本概念教學(xué)過程分析

      對生活中的實(shí)際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

      2.算法的流程圖教學(xué)過程分析

      對生活中的實(shí)際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達(dá)解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

      3.基本算法語句教學(xué)過程分析

      經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達(dá)算法,

      4.通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

      九、單元評價設(shè)想

      1.重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價

      關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對用集合語言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會集合語言準(zhǔn)確、簡潔的特征;是否能積極、主動地發(fā)展自己運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力。

      2.正確評價學(xué)生的數(shù)學(xué)基礎(chǔ)知識和基本技能

      關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

      高中數(shù)學(xué)說課稿 9

      一、教學(xué)目標(biāo)

      (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

      (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

      (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

      (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

      (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

      (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

      二、教學(xué)重點(diǎn)難點(diǎn):

      重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.

      三、教學(xué)過程

      1.新課導(dǎo)入

      在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

      初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

      (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

      學(xué)生舉例:平行四邊形的對角線互相平. ……(1)

      兩直線平行,同位角相等.…………(2)

      教師提問:“……相等的角是對頂角”是不是命題?……(3)

      (同學(xué)議論結(jié)果,答案是肯定的)

      教師提問:什么是命題?

      (學(xué)生進(jìn)行回憶、思考.)

      概念總結(jié):對一件事情作出了判斷的語句叫做命題.

      (教師肯定了同學(xué)的回答,并作板書.)

      由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

      (教師利用投影片,和學(xué)生討論以下問題.)

      例1 判斷以下各語句是不是命題,若是,判斷其真假:

      命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

      初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

      2.講授新課

      大家看課本(人教版,試驗(yàn)修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

      (片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

      (1)什么叫做命題?

      可以判斷真假的語句叫做命題.

      判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的`語句叫做“開語句”).

      (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

      “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

      對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

      對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.

      對“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補(bǔ)集 .

      命題可分為簡單命題和復(fù)合命題.

      不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

      由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

      (4)命題的表示:用 , , , ,……來表示.

      (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

      我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

      給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

      對于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .

      在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

      3.鞏固新課

      例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

      (1) ;

      (2)0.5非整數(shù);

      (3)內(nèi)錯角相等,兩直線平行;

      (4)菱形的對角線互相垂直且平分;

      (5)平行線不相交;

      (6)若 ,則 .

      (讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

      例3 寫出下表中各給定語的否定語(用課件打出來).

      若給定語為

      等于

      大于

      是

      都是

      至多有一個

      至少有一個

      至多有個

      其否定語分別為

      分析:“等于”的否定語是“不等于”;

      “大于”的否定語是“小于或者等于”;

      “是”的否定語是“不是”;

      “都是”的否定語是“不都是”;

      “至多有一個”的否定語是“至少有兩個”;

      “至少有一個”的否定語是“一個都沒有”;

      “至多有 個”的否定語是“至少有 個”.

      (如果時間寬裕,可讓學(xué)生討論后得出結(jié)論.)

      置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時間作適當(dāng)?shù)谋嫖雠c展開.)

      4.課堂練習(xí):第26頁練習(xí)1

      5.課外作業(yè):第29頁習(xí)題1.6

      高中數(shù)學(xué)說課稿 10

      教學(xué)目標(biāo):

      1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

      2.能識別和理解簡單的框圖的功能.

      3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.

      教學(xué)方法:

      1. 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達(dá)求解問題的過程,加深對流程圖的感知.

      2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

      教學(xué)過程:

      一、問題情境

      1.情境:

      某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

      其中(單位:)為行李的重量.

      試給出計算費(fèi)用(單位:元)的一個算法,并畫出流程圖.

      二、學(xué)生活動

      學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

      解 算法為:

      輸入行李的重量;

      如果,那么,

      否則;

      輸出行李的重量和運(yùn)費(fèi).

      上述算法可以用流程圖表示為:

      教師邊講解邊畫出第10頁圖1-2-6.

      在上述計費(fèi)過程中,第二步進(jìn)行了判斷.

      三、建構(gòu)數(shù)學(xué)

      1.選擇結(jié)構(gòu)的概念:

      先根據(jù)條件作出判斷,再決定執(zhí)行哪一種

      操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

      如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.

      2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

      斷的不同情況進(jìn)行不同的操作,這類問題的'實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;

      (2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

      (3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

      行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;

      (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進(jìn)入點(diǎn)和

      兩個退出點(diǎn).

      3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

      高中數(shù)學(xué)說課稿 11

      [學(xué)習(xí)目標(biāo)]

      (1)會用坐標(biāo)法及距離公式證明Cα+β;

      (2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

      (3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

      [學(xué)習(xí)重點(diǎn)]

      兩角和與差的正弦、余弦、正切公式

      [學(xué)習(xí)難點(diǎn)]

      余弦和角公式的推導(dǎo)

      [知識結(jié)構(gòu)]

      1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的'余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

      2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

      3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

      4、關(guān)于公式的正用、逆用及變用

      高中數(shù)學(xué)說課稿 12

      教材分析:

      前面已學(xué)習(xí)了向量的概念及向量的線性運(yùn)算,這里引入一種新的向量運(yùn)算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運(yùn)算與學(xué)生已有知識建立了聯(lián)系,又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān),同時與前面的向量運(yùn)算不同,其計算結(jié)果不是向量而是數(shù)量。

      在定義了數(shù)量積的概念后,進(jìn)一步探究了兩個向量夾角對數(shù)量積符號的影響;然后由投影的概念得出了數(shù)量積的幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的`重要性質(zhì);最后“探究”研究了運(yùn)算律。

      教學(xué)目標(biāo):

      (一)知識與技能

      1.掌握數(shù)量積的定義、重要性質(zhì)及運(yùn)算律;

      2.能應(yīng)用數(shù)量積的重要性質(zhì)及運(yùn)算律解決問題;

      3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運(yùn)用平面向量數(shù)量積解決問題打好基礎(chǔ)。

      (二)過程與方法

      以物體受力做功為背景引入向量數(shù)量積的概念,從數(shù)與形兩方面引導(dǎo)學(xué)生對向量數(shù)量積定義進(jìn)行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。

      (三)情感、態(tài)度與價值觀

      創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中“功”這個概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識,加強(qiáng)數(shù)學(xué)與其它學(xué)科及生活實(shí)踐的聯(lián)系。

      教學(xué)重點(diǎn):

      1.平面向量的數(shù)量積的定義;

      2.用平面向量的數(shù)量積表示向量的模及向量的夾角。

      教學(xué)難點(diǎn):

      平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用。

      教學(xué)方法:

      啟發(fā)引導(dǎo)式

      教學(xué)過程:

      (一)提出問題,引入新課

      前面我們學(xué)習(xí)了平面向量的線性運(yùn)算,包括向量的加法、減法、以及數(shù)乘運(yùn)算,它們的運(yùn)算結(jié)果都是向量,既然兩個向量可以進(jìn)行加法、減法運(yùn)算,我們自然會提出:兩個向量是否能進(jìn)行“乘法”運(yùn)算呢?如果能,運(yùn)算結(jié)果又是什么呢?

      這讓我們聯(lián)想到物理中“功”的概念,即如果一個物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計算呢?

      我們知道:W=|F||s|cosθ,功是一個標(biāo)量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運(yùn)算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。

      (二)講授新課

      今天我們就來學(xué)習(xí):(板書課題)

      高中數(shù)學(xué)說課稿 13

      教學(xué)目的

      掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

      教學(xué)重點(diǎn)

      圓的'標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

      教學(xué)難點(diǎn)

      標(biāo)準(zhǔn)方程的靈活運(yùn)用

      教學(xué)過程:

      一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

      二、掌握知識,鞏固練習(xí)

      練習(xí):⒈說出下列圓的方程

      ⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

      ⒉指出下列圓的圓心和半徑

      ⑴(x-2)2+(y+3)2=3

      ⑵x2+y2=2

      ⑶x2+y2-6x+4y+12=0

      ⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

      ⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

      三、引伸提高,講解例題

      例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

      練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

      2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

      例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

      例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

      四、小結(jié)練習(xí)P771,2,3,4

      五、作業(yè)P811,2,3,4

    【高中數(shù)學(xué)說課稿】相關(guān)文章:

    高中數(shù)學(xué)的說課稿04-19

    高中數(shù)學(xué)經(jīng)典說課稿11-25

    高中數(shù)學(xué)《數(shù)列》說課稿01-18

    高中數(shù)學(xué)說課稿06-12

    高中數(shù)學(xué)數(shù)列說課稿06-07

    高中數(shù)學(xué)說課稿06-13

    高中數(shù)學(xué)數(shù)列說課稿11-20

    高中數(shù)學(xué)優(yōu)秀說課稿03-03

    高中數(shù)學(xué)向量說課稿09-09

    高中數(shù)學(xué)優(yōu)秀說課稿03-08

    主站蜘蛛池模板: 日韩在线精品一二三区| 精品国产爽爽AV| 精品一区二区三区免费视频 | 国产精品亚洲片在线| 久久精品18| 91精品国产91久久| 国产91精品在线观看| 最新精品国偷自产在线| 久久精品国产色蜜蜜麻豆| 99精品电影一区二区免费看| 99久久er这里只有精品18| 人妻AV一区二区三区精品| 亚洲国产精品成人| 久久久不卡国产精品一区二区| 99久久精品九九亚洲精品| 国产精品成人免费福利| 国产成人精品高清在线观看93| 无码久久精品国产亚洲Av影片| 亚洲av午夜成人片精品电影| 久久亚洲国产成人精品无码区| 国产伦精品一区二区免费| 国产国拍亚洲精品福利| 999久久久免费国产精品播放| 亚洲国产综合精品中文第一区| 国产精品久久久久久福利69堂| 精品国产乱码久久久久久郑州公司| 日韩精品一区二区三区中文 | 国产69精品久久久久99尤物| 久久精品国产只有精品2020| 国产精品久久毛片完整版| 国产精品无码av在线播放| 精品人妻久久久久久888| 国产网红无码精品视频| 国产国产精品人在线视| 97在线精品视频| 久久九九亚洲精品| 88国产精品无码一区二区三区| 国产成人精品一区二三区在线观看 | 麻豆亚洲AV永久无码精品久久| 亚洲精品国产精品乱码不99| 中文字幕精品久久|