精選高中數(shù)學說課稿集合9篇
在教學工作者實際的教學活動中,有必要進行細致的說課稿準備工作,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。如何把說課稿做到重點突出呢?以下是小編精心整理的高中數(shù)學說課稿9篇,僅供參考,歡迎大家閱讀。
高中數(shù)學說課稿 篇1
各位老師,大家好!
我是08數(shù)學本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進行分析.
一、教材分析
集合的含義與表示是選自高中新課標A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學生已經(jīng)接觸過集合的一些相關概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎性概念,是數(shù)學以至所有科學的基礎,應用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學生的探索精神和數(shù)學素養(yǎng).
二、教學目標
根據(jù)上述對教材的分析,我確定本節(jié)課的教學目標為 1. 知識與技能目標 理解集合的含義,集合的元素的特征,元素與集合的關系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學生的抽象思維能力、分析能力、判斷能力.
2. 過程與方法目標
應用自然語言與集合語言描述不同的具體問題,與學生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.
3. 情感態(tài)度價值觀目標
使得學生感受數(shù)學的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學生正確的、高尚的、唯物的價值觀.培養(yǎng)學生獨立思考、敢于創(chuàng)新、勇于探索的科學精神,激發(fā)同學們學習數(shù)學的興趣. 三、重點和難點
重點:根據(jù)上述對教材的分析,確定的教學目標,我確定本節(jié)課的教學重點為:集合的含義,集合的表示方法.
難點:考慮到學生已有的知識基礎與認知能力,我認為教學難點是集合的表示方法. 關鍵:學好本節(jié)課的關鍵是理解集合的含義,掌握集合的表示方法. 四、教學方法 1.學情分析
(1)生理特點:高中階段是智力發(fā)展的關鍵年齡,學生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.
(2)心理特點:高中學生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.
(3)認知障礙:有的學生遺忘了學過的知識,有的學生想象能力與歸納能力較差. 2.教法學法
根據(jù)上面的分析,從高中生的心理特點和認知水平出發(fā),結合學生的實際情況與認知障礙,按照突出重點,突破難點,本節(jié)課采用學生廣泛參與,師生共同探討的啟發(fā)式教學法. 五、教學過程(用描述性語言,不要具體化!)
根據(jù)以上分析,我對本節(jié)課的教學過程作如下安排:
1.引入課題
先引導學生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解
(1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.
(2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關系,一些常見的數(shù)集.
(3)為了化解教學難點,我將結合具體的例子,講解列舉法與描述法.
(4)為了加強學生對集合的含義的理解,我將與學生一起歸納出集合的元素的特征. (5)為了提高學生解決實際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習
為了使得學生掌握等差數(shù)列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習題.
4.歸納小結
完成以上的教學內(nèi)容后,我將組織學生對本節(jié)課的內(nèi)容做一個總結,強調(diào)重點. 5.布置作業(yè)
為了鞏固所學知識,激發(fā)學生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設計
結合中學黑板的特點,我將如下板書本節(jié)教學內(nèi)容: 集合的含義與表示 實例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習 作業(yè) 各位老師,以上只是我的一種預設方案,但課堂千變?nèi)f化,我將根據(jù)實際情況靈活掌握,隨機發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關系
數(shù)學必修1第一章第二節(jié)第1小節(jié)《集合間的基本關系》說課稿.
一 、教學內(nèi)容分析
集合概念及其理論是近代數(shù)學的基石,集合語言是現(xiàn)代數(shù)學的基本語言,通過學習、使用集合語言,有利于學生簡潔、準確地表達數(shù)學內(nèi)容,高中課程只將集合作為一種語言來學
習,學生將學會使用最基本的集合語言表示有關的數(shù)學對象,發(fā)展運用數(shù)學語言進行交流的能力.
本章集合的初步知識是學生學習、掌握和使用數(shù)學語言的基礎,是高中數(shù)學學習的出發(fā)點。本小節(jié)內(nèi)容是在學習了集合的概念以及集合的`表示方法、元素與集合的從屬關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合之間的運算的基礎,因此本小節(jié)起著承上啟下的重要作用.
本節(jié)課的教學重視過程的教學,因此我選擇了啟發(fā)式教學的教學方式。通過問題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學生的逐步提升數(shù)學思維。
二、學情分析
本節(jié)課是學生進入高中學習的第3節(jié)數(shù)學課,也是學生正式學習集合語言的第3節(jié)課。由于一切對于學生來說都是新的,所以學生的學習興趣相對來說比較濃厚,有利于學習活動的展開。而集合對于學生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關系,陌生的是使用集合的語言來描述集合之間的關系。而從具體的實例中抽象出集合之間的包含關系的本質(zhì),對于學生是一個挑戰(zhàn)。
根據(jù)上面對教材的分析,并結合學生的認知水平和思維特點,確定本節(jié)課的教學目標和教學重、難點如下:
三、教學目標: 知識與技能目標:
(1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;
(3)能使用Venn圖表達集合之間的包含關系 過程與方法目標:
(1)通過復習元素與集合之間的關系,對照實數(shù)的相等與不相等的關系聯(lián)系元素與集合之間的從屬關系,探究集合之間的包含和相等關系;
(2)初步經(jīng)歷使用最基本的集合語言表示有關的數(shù)學對象的過程,體會集合語言,發(fā)展運用數(shù)學語言進行交流的能力;
情感、態(tài)度、價值觀目標:
(1)了解集合的包含、相等關系的含義,感受集合語言在描述客觀現(xiàn)實和數(shù)學問題中的意義;
(2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結合的思想。
四、本節(jié)課教學的重、難點:
重點:(1)幫助學生由具體到抽象地認識集合與集合之間的關系——子集; (2)如何確定集合之間的關系; 難點:集合關系與其特征性質(zhì)之間的關系 五、教學過程設計
1.新課的引入——設置問題情境,激發(fā)學習興趣
我們的教學方式,要服務于學生的學習方式。那我們來思考一下,在何種情況下,學生學得最好?我想,當學生感興趣時;當學生智力遭遇到挑戰(zhàn)時;當學生能自主地參與探索和創(chuàng)新時;當學生能夠學以致用時;當學生得到鼓勵與信任時,他們學得最好。數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學生容易產(chǎn)生厭煩心理,如何讓學生長時間興趣盎然地投入到集合關系的學習中呢?我在整個教學過程中層層設問,不斷地向學生提出挑戰(zhàn),以激發(fā)學生的學習興趣。在引入的環(huán)節(jié),我設計了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關系;數(shù)與數(shù)之間有“相等”、“不相等”的關系;那么集合與集合之間有什么樣的關系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學生迫切尋求答案的愿望,激發(fā)學生的求知欲。在學生討論的基礎上提出這一節(jié)課我們來共同探討集合之間的基本關系。(板書課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:
具體實例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};
此環(huán)節(jié)設置了三個具體實例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學生初步認識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關系找出集合間的關系;第三個例子是無限數(shù)集,基于學生初中階段已經(jīng)學習了用數(shù)軸表示不等式的解集,啟發(fā)學生可以通過數(shù)形結合的方式來研究集合之間的關系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學生體會“任意”性。使學生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎上建構子集的概念,并且我在教學的過程中特別注重讓學生說,借此來學習運用集合語言進行交流,對于學生的創(chuàng)新意識和創(chuàng)新結果我都給予積極的評價。
3、概念的剖析
(1)A中的元素x與集合B的關系決定了集合A與集合B之間的關系,
(2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。
這里引入了許多新的符號,對初學者來說容易混淆,是一個易錯點,因此我在這里設置了一個填空小練習:
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導學生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。
4、概念的深化——集合的相等與真子集
問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關系呢?
高中數(shù)學說課稿 篇2
一、教材分析:
"數(shù)列"是中學數(shù)學的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實際生活中也經(jīng)常要用到數(shù)列的一些知識。例如:儲蓄、分期付款中的有關計算就要用到數(shù)列知識。
就本節(jié)課而言,在給出數(shù)列的基本概念之后,結合例題,指出數(shù)列可以看作定義域為正整數(shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識的延伸及應用,可以使學生加深對函數(shù)概念的理解;另一方面也可以為后面學習等差數(shù)列、等比數(shù)列的通項、求和等知識打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。
二、教學目標:
根據(jù)上面對教材的分析,并結合學生的認知水平和思維特點,確定本節(jié)課的教學目標。
1、知識目標:
(1)形成并掌握數(shù)列及其有關概念,識記數(shù)列的表示和分類,了解數(shù)列通項公式的意義。
(2)理解數(shù)列的通項公式,能根據(jù)數(shù)列的通項公式寫出數(shù)列的任意一項。對比較簡單的數(shù)列,使學生能根據(jù)數(shù)列的前幾項觀察歸納出數(shù)列的通項公式,并通過數(shù)列與函數(shù)的比較加深對數(shù)列的認識。
2、能力目標:
培養(yǎng)學生觀察、歸納、類比、聯(lián)想等分析問題的能力,同時加深理解數(shù)學知識之間相互滲透性的思想。
3、情感目標:
通過滲透函數(shù)、方程思想,培養(yǎng)學生的思維能力,使學生在民主、和諧的活動中感受學習的樂趣。通過介紹數(shù)列與函數(shù)間存在的特殊到一般關系,向學生進行辯證唯物主義思想教育。
三、重點、難點:
1、教學重點
理解數(shù)列的概念及其通項公式,加強與函數(shù)的聯(lián)系,并能根據(jù)通項公式寫出數(shù)列中的任意一項。
2、教學難點
根據(jù)數(shù)列前幾項的特點,通過多角度、多層次的觀察和分析,歸納出數(shù)列的通項公式。
四、教法學法
本節(jié)課以"問題情境——歸納抽象——鞏固訓練"的模式展開,引導學生從知識和生活經(jīng)驗出發(fā),提出問題并與學生共同探索、討論解決問題的方法,讓學生經(jīng)歷知識的形成過程,從而理解更加透徹。
現(xiàn)代教學觀明確指出:教師是主導,學生是主體,學生應成為學習的主人。根據(jù)本節(jié)內(nèi)容及學生的認知規(guī)律,針對不同內(nèi)容應選擇不同的方法。對于國際象棋棋盤麥粒采用電腦動畫演示,增強感性認識;所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對通項公式及數(shù)列的分類等概念采用指導閱讀法;對于難題(根據(jù)數(shù)列的前幾項寫出一個通項公式)采用講練結合法。
"授人以魚,不如授人以漁",平時在教學中教師應不斷指導學生學會學習。本節(jié)課從學生實際出發(fā),創(chuàng)設情境,引導學生觀察、分析,探索發(fā)現(xiàn),歸納總結,培養(yǎng)學生積極思維的品質(zhì),加強主動學習的能力。
為了有效地突出重點,突破難點,增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學手段與現(xiàn)代教學手段相結合,將引例、例題、練習等實物投影。
五、教學過程
1、創(chuàng)設情景,激發(fā)興趣,引入新課
(1)電腦動畫演示:國際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263
敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。
設計意圖:以實例引入概念,再配以電腦動畫,敘述小故事,增強了感性認識,調(diào)動學生學習新知識的積極性。
(2)投影演示,再觀察以下幾列數(shù):
①某班學生的學號:1,2,3,4……,50
②從1984年到20xx年,中國體育健兒參加奧運會每屆所得的金牌數(shù):
15,5,16,16,28,32
③某次活動,在1km長的路段,從起點開始,每隔10m放置一個垃圾筒,由近及遠各筒與起點的距離排成一列數(shù):0.10.20.30,……1000
④放射性物質(zhì)衰變,設原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……
2、歸納抽象,形成概念
(1)學生嘗試敘述數(shù)列的定義:啟發(fā)學生觀察上述幾組數(shù)據(jù)后,進行歸納總結定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學生的抽象概括能力。
舉例1:1,3,5,7與7,5,3,1 這兩個數(shù)列有何區(qū)別?
舉例2:-1,1,-1,1,……是不是一個數(shù)列?
設計意圖:使學生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來:
①數(shù)列中的數(shù)是有順序的,而集合中的元素是無序的。
②數(shù)列中的數(shù)可以重復出現(xiàn),而集中的元素不能重復出現(xiàn)。
進一步加深學生對數(shù)列定義的理解。
(2)數(shù)列的項及項的表示方法: an
(3)數(shù)列的表示方法:可寫成:a1,a2,a3,……,an……
或簡記為:{an},注意an與{an}的區(qū)別
上述(2)(3)采用指導閱讀法(書P106頁第7節(jié)~第8節(jié)第一句話),對an與{an}的區(qū)別進行集體討論歸納。
3、通項公式的'探索
(1)觀察歸納定義
由學生觀察引例中數(shù)列的項與它在數(shù)列中的位置(即項的序號)間的關系:
實物投影:
序號 1 2 3 …… 64
↓ ↓ ↓ ↓
項 1= 21-1 2=22-1 22 = 23-1 …… 263
從而可看出項與項的序號之間可用一個公式:an =2n-1表示,該公式叫數(shù)列的通項公式,然后歸納抽象出數(shù)列的通項公式的定義(略)。
(2)用函數(shù)觀點看待數(shù)列:這是一個難點,講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當自變量由小到大依次取值時對應的一列函數(shù)值(這是數(shù)列的本質(zhì)),其圖象是一群孤立的點,畫圖(棋盤麥粒這個數(shù)列)
設計意圖:加深對函數(shù)概念的理解。
(3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。
4、講解例題
設計例題:①根據(jù)通項公式寫出前幾項并會判斷某個數(shù)是否為該數(shù)列中的項;②根據(jù)數(shù)列的前幾項寫出一個通項公式。
例1,根據(jù)下列數(shù)列{an}的通項公式,寫出它的前5項
(1) an= n/(n+1) (2)an=(-1)n · n
設計意圖:使學生正確掌握通項與序號的關系。
變式訓練:問 2589/2590是否為數(shù)列(1)中的項
設計意圖:使學生明確方程思想是解決數(shù)列問題的重要方法。
例2,寫出下列數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):
(1)1,3,5,7
(2)2, -2,2 ,-2
(3)1 ,11 ,111 ,
設計意圖:引導學生進行解題后反思,對完善學生的認知結構是十分必要。寫通項公式時,就是要去發(fā)現(xiàn)an與n的關系,對各項進行多角度、多層次觀察,找出這些項與相應的項數(shù)(即序號)之間的對應關系。(注:遇到分數(shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進行符號交換,有時也可根據(jù)相鄰的項,適當調(diào)整有關的表達式。)
5、練習鞏固
投影演示:
(1)寫出數(shù)列1,-1,1,-1,……的一個通項公式
(2)是否所有數(shù)列都有通項公式?
上述(1)的設計意圖:an=(-1)n+1也可寫成 (分段函數(shù)的形式)(當n為奇數(shù)時,n為偶數(shù)時),說明根據(jù)數(shù)列的前幾項寫出的通項公式可能不唯一。(2):引例②就沒有通項公式。通過這些練習,使學生能及時消化,及時鞏固所學內(nèi)容。
6、歸納小結
由學生試著總結本節(jié)課所學內(nèi)容,老師適當補充,可以訓練學生的收斂思維,有助于完善學生的思維結構。
(1) 數(shù)列及有關概念。
(2) 根據(jù)數(shù)列的通項公式求任意一項,并能判斷某數(shù)是否為該數(shù)列中的項。
(3) 根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式。
(4) 數(shù)列與函數(shù)的關系
7、課后作業(yè):
(1)課本P110/習題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)
(2)復習看書P106-107
六、評價與分析
本節(jié)課,教師可通過創(chuàng)設情景,適時引導的方式來激發(fā)學生積極思考的欲望,有時直接講解,有時組織掌握學生集體討論、探索發(fā)現(xiàn),課堂上除反復強調(diào)注意點外,還應通過課堂練習和課后作業(yè)來強化它們。
通過本節(jié)課的學習,學生不僅掌握了數(shù)列及有關概念,而且可體會到數(shù)學概念形成過程中蘊含的基本數(shù)學思想:"函數(shù)思想、數(shù)形結合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問題的能力,也可以逐漸學會辯證地看待問題。
高中數(shù)學說課稿 篇3
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內(nèi)容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。
3. 重點,難點以及確定依據(jù):
下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
3. 學情分析:(說學法)
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
(1)由 引入:把教學內(nèi)容轉化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內(nèi)容小結,可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的.效果。
(7)板書
(8)布置作業(yè)。
針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
(一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數(shù)學集合教學反思
集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質(zhì)進行分析,反復訓練,讓學生通過實例體會這三個性質(zhì)。
第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結合思想,集合間的關系和運算,以數(shù)形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
高中數(shù)學說課稿 篇4
說課目標
(1)知識目標:掌握拋物線的定義,掌握拋物線的四種標準方程形式,及其對應的焦點、準線。
(2)能力目標:通過對拋物線概念和標準方程的學習,培養(yǎng)學生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線的統(tǒng)一定義,形成學生對事物運動變化、對立、統(tǒng)一的辨證唯物主義觀點。
(3)德育目標:通過拋物線概念和標準方程的學習,培養(yǎng)學生勇于探索、嚴密細致的科學態(tài)度,通過提問、討論、思考等教學活動,調(diào)動學生積極參與教學,培養(yǎng)良好的學習習慣。
教學重點:(1)拋物線的定義及焦點、準線;
(2)利用坐標法求出拋物線的四種標準方程;
(3)會根據(jù)拋物線的焦點坐標,準線方程求拋物線的標準方程。
教學難點:(1)拋物線的四種圖形及標準方程的區(qū)分;
(2)拋物線定義及焦點、準線等知識的'靈活運用。
說課方法:啟發(fā)引導法(通過橢圓與雙曲線第二定義引出拋物線)。
依據(jù)建構主義教學原理,通過類比、歸納把新知識化歸到原有的認知結構中去(二次函數(shù)與拋物線方程的對比,移圖與建立適當建立坐標系的方法的歸納)。
利用多媒體教學
說課過程:
一、課題引入
利用學生已有知識提問學生:1、橢圓的第二種定義:到定點與到定直線的距離的比是小于1的常數(shù)的點的軌跡是橢圓。(用課件演示)
2、雙曲線的第二種定義:到定點與到定直線的距離的比是大于1的常數(shù)的點的軌跡是雙曲線。(用課件演示)
由此引出:到定點的距離和到定直線的距離的比是等于1的常數(shù)的點的軌跡
是什么?
(以問題為出發(fā)點,創(chuàng)設情景,提高學生求知欲)
教師用直尺、三角板和細繩演示,學生觀察所得曲線。
從而引出本節(jié)課的學習內(nèi)容。
二、講授新課
1.對拋物線的初步認識
物理中拋物線的運動軌跡;數(shù)學中二次函數(shù)的圖象;生活中拋物線的實例(圖片顯示)等。
2.拋物線的定義
3.拋物線標準方程的推導:①學生回顧求曲線方程的步驟(建系、設點、列方程);
②若焦點F和準線的距離為()這樣建立坐標系?由學生思考:可能出現(xiàn)的結果:
四、課堂小結
1、本節(jié)課的內(nèi)容:拋物線的定義,焦點、準線的意義及四種標準方程;
2、理解參數(shù)的幾何意義(焦準距)
3、利用坐標法求曲線方程是坐標系的適當選取。
課后作業(yè):119頁習題8.52,4
設計說明:學生在初中學習二次函數(shù)時知道二次函數(shù)的圖象是一個拋物線,在物理的學習中也接觸過拋物線(物體的運動軌跡)。因而對拋物線的認識比對前面學習的兩種圓錐曲線橢圓和雙曲線更多。所以學生學起來會輕松。但是要注意的是,現(xiàn)在所學的拋物線是方程的曲線而不是函數(shù)的圖象。本節(jié)內(nèi)容是在學習了橢圓和雙曲線的基礎上,利用圓錐曲線的第二定義統(tǒng)一進行展開的,因而對于拋物線的系統(tǒng)學習具有雙重的目標性。
拋物線作為點的軌跡,其標準方程的推導過程充滿了辨證法,處處是數(shù)與形之間的對照和相互轉化。而要得到拋物線的標準方程,必須建立適當?shù)淖鴺讼担要依賴焦點和準線的相互位置關系,這是拋物線標準方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標準方程的推導也是培養(yǎng)辨證唯物主義觀點的好素材。
利用圓錐曲線第二定義通過類比方法,引導學生觀察和對比,啟發(fā)學生猜想與概括,利用建立坐標系求出拋物線的四種標準方程,讓每一個學生都能動手,動口,動腦參與教學過程,真正貫徹“教師為主導,學生為主體”的教學思想。對于標準方程中的參數(shù)及其幾何意義,焦點坐標和準線方程與的關系是本節(jié)課的重點內(nèi)容,必須讓學生掌握如何根據(jù)標準方程求、焦點坐標、準線方程或根據(jù)后三者求拋物線的標準方程。特別對于一些有關距離的問題,要能靈活運用拋物線的定義給予解決。
當前素質(zhì)教育的主流是培養(yǎng)學生的能力,讓學生學會學習。本節(jié)課采用學生通過探索、觀察、對比分析,自己發(fā)現(xiàn)結論的學習方法,培養(yǎng)了學生邏輯思維能力,動手實踐能力以及探索的精神。
高中數(shù)學說課稿 篇5
尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數(shù)學必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內(nèi)容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。
一、教學背景的分析
1.教材分析
直線的方程是學生在初中學習了一次函數(shù)的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續(xù)研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內(nèi)容之一。“直線的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應用。同時在這一節(jié)中利用坐標法來研究曲線的數(shù)形結合、幾何直觀等數(shù)學思想將貫穿于我們整個高中數(shù)學教學。
2.學情分析
我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現(xiàn)“數(shù)”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。
根據(jù)上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;
(2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;
(3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規(guī)律;
(4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關系等活動,培養(yǎng)學生主動探究知識、合作交流的意識,并初步了解數(shù)形結合在解析幾何中的應用。
4. 教學重點與難點
(1)重點: 直線點斜式、斜截式方程的特點及其初步應用。
(2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。
二、教法學法分析
1.教法分析:根據(jù)學情,為了能調(diào)動學生學習的積極性,本節(jié)課采用“實例引導的啟發(fā)式”問題教學法。幫助學生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當?shù)睦枚嗝襟w課件進行輔助教學,激發(fā)學生的學習興趣。
2.學法分析:學生從問題中嘗試、總結、質(zhì)疑、運用,體會學習數(shù)學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉化思想。
下面我就對具體的教學過程和設計加以說明:
三、教學過程的設計及實施
整個教學過程是由六個問題組成,共分為四個環(huán)節(jié),學習或涉及四個概念:
溫故知新,澄清概念----直線的方程
深入探究,獲得新知--------點斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續(xù)--------兩點式
平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學習的內(nèi)容。
(一)溫故知新,澄清概念----直線的'方程
問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?
[學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。
[教師活動] 對于不同學生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。
[設計意圖]從學生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學生已有的數(shù)學知識去學數(shù)學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。
問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。
(1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;
(2)畫出直線l,你能求出直線l的方程嗎?
(3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?
[學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。
[教師活動]巡視。肯定學生的各種方法及大膽嘗試的行為;并引導學生觀察發(fā)現(xiàn),得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數(shù)法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。
(二)深入探究,獲得新知----點斜式
問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。
②直線的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?
[學生活動] ①學生敘述,老師板書,強調(diào)斜率公式與點斜式的區(qū)別。 ②指導學生用筆轉一轉不難發(fā)現(xiàn),當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。
[設計意圖] 由特殊到一般的學習思路,突破難點,培養(yǎng)學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。
問題四:分別求經(jīng)過點且滿足下列條件的直線的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學生活動]學生獨立完成并展示或敘述,老師點評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學,指導下個環(huán)節(jié)的安排;突破重點內(nèi)容后,進入第三環(huán)節(jié)。
(三)拓展知識,再獲新知----斜截式
問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。
(2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。
[學生活動]學生獨立完成后口述,教師板書。
[設計意圖] 由一般到特殊再到一般,培養(yǎng)學生的推理能力,同時引出截距的概念及斜截式方程,強調(diào)截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關系。通過下面的基礎練習,突破重點。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時反饋本環(huán)節(jié)的教學情況,指導下個環(huán)節(jié)的安排。
(四)小結引申,思維延續(xù)----兩點式
課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)
2、哪些地方還沒有學好?
問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。
(2)直線l過點(2,-1)和點(3,-3),求直線l的方程。
[學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。
[設計意圖](1)小題與上一節(jié)的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學生有一些發(fā)散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過分層作業(yè),做到因材施教,使不同的學生在數(shù)學上得到不同的發(fā)展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展。
四、教學特點分析
(一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發(fā)展。
(二)啟發(fā)式教學。教學中總是以提問的方式敘述所學內(nèi)容,如:1.直角坐標系內(nèi)的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數(shù)有什么關系?等等。啟發(fā)學生的思維,作好與學生的對話與交流活動。
(三)注重自主探究。設計問題鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發(fā)展區(qū)上,布設了由淺入深的學習環(huán)境突破重點、難點,引導學生逐步發(fā)現(xiàn)知識的形成過程。設計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創(chuàng)造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。
高中數(shù)學說課稿 篇6
高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產(chǎn)生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯(lián)系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。
一、內(nèi)容分析說明
1、本小節(jié)內(nèi)容是初中學習的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學的其他部分有密切的聯(lián)系:
(1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復習可對多項式的變形起到復習深化作用。
(2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡。
(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應用題結合在一起求某些數(shù)、式的
近似值。
二、學校情況與學生分析
(1)我校是一所鎮(zhèn)普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數(shù)學難學。但大部分學生想考大學,主觀上有學好數(shù)學的愿望。
(2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。
三、教學目標
復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結合學生的'特點,設定如下教學目標:
1、知識目標:(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。
(2)會運用展開式的通項公式求展開式的特定項。
2、能力目標:(1)教給學生怎樣記憶數(shù)學公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學能力,是其它能力的基礎。
(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學思想方法。
3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數(shù)學的部分內(nèi)容,樹立學好數(shù)學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。
四、教學過程
1、知識歸納
(1)創(chuàng)設情景:①同學們,還記得嗎? 、 、 展開式是什么?
②學生一起回憶、老師板書。
設計意圖:①提出比較容易的問題,吸引學生的注意力,組織教學。
②為學生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
(2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
②老師要求學生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。
③鞏固練習 填空
設計意圖:①教給學生記憶的方法,比較分析公式的特點,記規(guī)律。
②變用公式,熟悉公式。
(3) 展開式中各項的系數(shù)C , C , C ,… , 稱為二項式系數(shù).
展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.
2、例題講解
例1求 的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。
講解過程
設問:這里 ,要求的第4項的有關系數(shù),如何解決?
學生思考計算,回答問題;
老師指明①當項數(shù)是4時, ,此時 ,所以第4項的二項式系數(shù)是 ,
②第4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。
板書
解:展開式的第4項
所以第4項的系數(shù)為 ,二項式系數(shù)為 。
選題意圖:①利用通項公式求項的系數(shù)和二項式系數(shù);②復習指數(shù)冪運算。
例2 求 的展開式中不含的 項。
講解過程
設問:①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?
②問題轉化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?
師生討論 “看不出哪一項是常數(shù)項,怎么辦?”
共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。
老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數(shù)是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數(shù)項。
板書
解:設展開式的第 項為不含 項,那么
令 ,解得 ,所以展開式的第9項是不含的 項。
因此 。
選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。
②判斷第幾項是常數(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉化,體現(xiàn)轉化的數(shù)學思想。
例3求 的展開式中, 的系數(shù)。
解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。
板書
解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。
而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數(shù)分別是: 。
所以 的展開式中 的系數(shù)為
例4 如果在( + )n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的有理項.
解:展開式中前三項的系數(shù)分別為1, , ,
由題意得2× =1+ ,得n=8.
設第r+1項為有理項,T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.
有理項為T1=x4,T5= x,T9= .
3、課堂練習
1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項是
A.14 B.14 C.42 D.-42
解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·
(-1)r·x ,
當- +3(7-r)=0,即r=6時,它為常數(shù)項,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)
解析:∵(x +x )n的展開式中各項系數(shù)和為128,
∴令x=1,即得所有項系數(shù)和為2n=128.
∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,
令 =5即r=3時,x5項的系數(shù)為C =35.
答案:35
五、課堂教學設計說明
1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關系求出,此后轉化為第一層次的問題。第三層次突出數(shù)學思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。
六、個人見解
高中數(shù)學說課稿 篇7
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯(lián)想的方法,領會方程、數(shù)形結合等思想。
(三)情感態(tài)度價值觀
1、感受動點軌跡的動態(tài)美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。
二、教學重點與難點
教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。
教學難點:圖形、文字、符號三種語言之間的過渡。
三、、教學方法和手段
教學方法:觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。
教學手段:利用網(wǎng)絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。
教學模式:重點中學實施素質(zhì)教育的課堂模式“創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
四、教學過程
1、創(chuàng)設情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的.城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。
2、激發(fā)情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數(shù)學說課稿 篇8
一、教材分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學習了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學習,既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎,又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應用意識打下了良好的學習基礎,所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關系已經(jīng)構建了一定的認知結構,主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉化到從集合與對應的觀點來認識函數(shù)。
技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準備。
素質(zhì)維度:由觀察到抽象的數(shù)學活動過程已有一定的體會,已初步了解了數(shù)形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:
(1)知識目標:①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實際問題;
(2)技能目標:①滲透數(shù)形結合的基本數(shù)學思想方法②培養(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標:①體驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉化,培養(yǎng)學生用聯(lián)系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數(shù)學科學的應用價值。
(4)教學重點:指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數(shù)形結合來掃清障礙。
二、教法設計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數(shù)函數(shù)的知識,更期望能引領學生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據(jù)自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創(chuàng)設問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。
2.強化“指數(shù)函數(shù)”概念.引導學生結合指數(shù)的有關概念來歸納出指數(shù)函數(shù)的定義,并向學生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學與生活和實踐的聯(lián)系.數(shù)學的本質(zhì)是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關的生活問題,力圖使學生了解到數(shù)學的基礎學科作用,培養(yǎng)學生的數(shù)學應用意識。
三、學法指導
本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認知結構。在引入兩個生活實例后,請學生回憶有關指數(shù)的概念,幫助學生再現(xiàn)原有認知結構,為理解指數(shù)函數(shù)的概念做好準備。
2.領會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓練、課內(nèi)小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的`接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質(zhì)、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設情景、導入新課
教師活動:①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,②將學生按奇數(shù)列、偶數(shù)列分組。
學生活動:①分別寫出計算機價格y與經(jīng)過月份x的關系式和細胞個數(shù)y與分裂次數(shù)x的關系式,并互相交流;②回憶指數(shù)的概念;③歸納指數(shù)函數(shù)的概念;④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設計意圖:通過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性, 為突破難點做好準備;
2.啟發(fā)誘導、探求新知
教師活動:①給出兩個簡單的指數(shù)函數(shù)并要求學生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。
學生活動:①畫出兩個簡單的指數(shù)函數(shù)圖象②交流、討論③歸納出研究函數(shù)性質(zhì)涉及的方面④總結出指數(shù)函數(shù)的性質(zhì)。
設計意圖:讓學生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學生的作圖習慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:①板書例1②板書例2第一問③介紹有關考古的拓展知識。
高中數(shù)學說課稿 篇9
1、對教材地位與作用的認識
在高中數(shù)學教學中,作為數(shù)學思想應向學生滲透,強化的有:函數(shù)與方程思想;數(shù)形結合思想;分類討論思想;等價轉化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視。“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關系,為“依形判數(shù)”與“就數(shù)論形”的相互轉化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學有著深遠的影響,另外在高考中也是考察的重點內(nèi)容,尤其是求曲線的方程,學生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學習得入門之路。應該認識到這節(jié)“曲線和方程”得開頭課是解析幾何教學的“重頭戲”!
2、教學目標的確定及依據(jù)
(大綱的要求)通過本小節(jié)的學習,要使學生了解解析幾何的基本思想,了解用坐標法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學目標上是這樣設定的:
1).了解曲線上的點與方程的解之間的一一對應關系,領會“曲線的方程”與“方程的曲線”的概念及其關系,并能作簡單的判斷與推理;
2).在形成概念的'過程中,培養(yǎng)分析、抽象和概括等思維能力;
3)會證明已知曲線的方程。
本節(jié)課的教學目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學生的學習行為上,即要求學生能答出曲線與方程間必須滿足的兩個關系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區(qū)別。知識的學習與能力的培養(yǎng)是同步的,在具體操作上結合圖形分析與反例,來辨析“兩個關系”之間的區(qū)別,從認識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎.
3、如何突破重難點
本小節(jié)的重點是理解曲線與方程的有關概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當難度,對學生理解上可能遇到的問題是學生不理解“曲線上的點的坐標都是方程的解”和”“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系各自所起的作用。有的學生只從字面上死記硬背;有的學生甚至誤以為這兩句話是同義反復。要突破這一點,關鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.
本節(jié)課的難點在于對定義中為什么要規(guī)定兩個關系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。
4、對教學過程的設計
今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學,具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關系;第二課時講解求曲線的方程一般方法,第三課時為習題課,通過練習來總結、鞏固和深化本節(jié)知識。如果以為學生不真正領悟曲線和方程得關系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學,這不能不說是一種“舍本逐末”得偏見。
在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學生所理解,因而教材中從直線開始,多次,重復地闡述,這說明其重要性.同時也說明理解它,掌握它確實需要一個過程.數(shù)學本身是很抽象,把數(shù)學和實際問題相結合才能激發(fā)學生的學習興趣,真正達到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。
教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關系。”學生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認識,在本節(jié)教學中充分發(fā)揮這些感性認識的作用。從人造地球衛(wèi)星運行的軌道等生動形象的實際問題引入,引起學生的興趣和好奇心以及對數(shù)學的應用有了更高的認識,更激發(fā)他們進一步學好數(shù)學的決心。(具體……)提出課題。運用學生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結論,那就不僅會失去開發(fā)學生思維的機會,影響學生的理解,而且會使教學變得枯燥乏味,抑制了學生學習的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學生對概念表述的嚴格性進行探索,學生自已認識曲線和方程的概念必須要具備的兩個關系,培養(yǎng)學生分析,歸納問題的能力,自然得出定義。并且把這個關系板書到黑板上,以示這就是這節(jié)課的重點。為了在重難點有所突破后強化其認識,又用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
然后通過運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過反復重現(xiàn),可以不斷領悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學生正確理解概念,通過解題辨析“兩個關系”,實現(xiàn)本節(jié)課的教學目標,為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。
曲線是符合某種條件的點的軌跡,為了下節(jié)課“求曲線的方程”的教學,安排了例3(見課件)證明曲線的方程,增加學生的感性認識,由于教材上有嚴謹?shù)淖C明過程,讓學生閱讀并總結證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學生獨立思考,閱讀歸納的能力。為了讓學生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習:(略)簡單評講后小結本課的主要內(nèi)容,進一步強化“曲線和方程”概念中兩個關系缺一不可,只有符合關系1)2)才能進行數(shù)與形的轉化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。
5、對學生學習活動的引導和組織
教案的設計與教案的實施往往有一定的距離,本節(jié)課有著概念性強,思維量大,例題與練習題不多的特點,這就決定了整節(jié)課將以學生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學,在具體操作上比較靈活,視學生的具體情況而定,把握學生的思維規(guī)律于數(shù)學思想的基本方法。例如,在概念教學中引導學生看反例,通過正反對比的方法,當學生觀察了例1回答不清為什么,可以舉出幾個點的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學生的認識規(guī)律,學生的認識活動就會順利展開,而且在認知的過程中訓練了探索的能力。強化數(shù)形結合、化歸與轉化的數(shù)學思想方法,完善學生的數(shù)學的結構,讓學生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學生多向思維、積極思考,勇于探索,從中培養(yǎng)學生合情推理能力,數(shù)學交流與合作能力以及主動參與的精神。
【高中數(shù)學說課稿】相關文章:
高中數(shù)學的說課稿04-19
高中數(shù)學說課稿06-12
高中數(shù)學優(yōu)秀說課稿03-08
高中數(shù)學說課稿06-13
高中數(shù)學數(shù)列說課稿06-07
高中數(shù)學全套說課稿06-08
高中數(shù)學說課稿(薦)04-03
高中數(shù)學數(shù)列說課稿(優(yōu)秀)07-16
高中數(shù)學說課稿(熱門)01-16